
GIT WORKSHOPGIT WORKSHOP

1 . 1

GIT WORKSHOPGIT WORKSHOP

Manuela Salvucci

2019-11-06

manuelasalvucci@rcsi.ie

1 . 2

mailto:manuelasalvucci@rcsi.ie

OUTLINEOUTLINE
What is version control?
Why bother with “formal” version control?
How to install and get started with GIT
Use GIT core features
Review files history, revert/amend changes
Collaborate online with others with BitBucket, GitHub or GitLab
Hands-on examples

1 . 3

VERSION CONTROLVERSION CONTROL

2 . 1

WHAT IS VERSION CONTROL?WHAT IS VERSION CONTROL?

(Pro Git, Scott Chacon and Ben Straub, 2014)

From

“Version control is a system that records changes to a file or set of
files over time so that you can recall specific versions later.”

https://wac-cdn.atlassian.com/dam/jcr:34e935dd-3108-40ef-bb3d-9ed01d977d6d/hero.svg?cdnVersion=659

2 . 2

https://wac-cdn.atlassian.com/dam/jcr:34e935dd-3108-40ef-bb3d-9ed01d977d6d/hero.svg?cdnVersion=659

WITHOUT VERSION CONTROL… A WAY TOO FAMILIARWITHOUT VERSION CONTROL… A WAY TOO FAMILIAR
PICTUREPICTURE

From http://phdcomics.com/comics/archive.php?comicid=1531

2 . 3

http://phdcomics.com/comics/archive.php?comicid=1531

WITHOUT VERSION CONTROL… “INFORMAL” VERSIONINGWITHOUT VERSION CONTROL… “INFORMAL” VERSIONING
None
Named files:

OK:
manuscript_my_dra�.docx
manuscript_my_dra�_with_coauthor_comments.docx
…

Better:
manuscript_dra�_v01.docx
manuscript_dra�_v02.docx
…

Named zip-files:
manuscript_dra�s.zip
manuscript_cell_submission.zip
manuscript_pnas_submission.zip
manuscript_pnas_revisions.zip
manuscript_pnas_proofs.zip

Sync online services (Microso�/Dropbox/Google/Overleaf/Sharelatex)

2 . 4

WITHOUT VERSION CONTROL… CHALLENGESWITHOUT VERSION CONTROL… CHALLENGES
Time consuming
Error prone
Requires self-discipline (save everything, good file names,
sticking to a routine, …)
Relationship between changes in multiple files is lost
Information about what, when and why something changed
is lost?

How would you go about finding out when the p-
value for Figure 2.A got set to the (wrong) value?

Non-linear history (parallel versions)
Disk space

From https://dynamicbusiness.com.au/wp-
content/uploads/2012/09/

2 . 5

https://dynamicbusiness.com.au/wp-content/uploads/2012/09/

WHY BOTHER WITH “FORMAL” VERSION CONTROL?WHY BOTHER WITH “FORMAL” VERSION CONTROL?
We are too busy to use inefficient, manual, error-prone versioning
Research is increasingly collaborative:

we need a better way to document the rational behind data cleaning, analysis
steps, generation of figures, write-ups…
we need a better way to “merge” inputs and feedback to the project from
collaborators
o�en your future self is the collaborator (and you don’t reply to emails…)

We do research anywhere:
on our workstation at work
on the laptop at home/bus/conference
on a dedicated facility workstation
…

Projects are always evolving and never “really” finished

2 . 6

WHAT CAN VERSION CONTROL SYSTEMS DO FOR MYWHAT CAN VERSION CONTROL SYSTEMS DO FOR MY
RESEARCH?RESEARCH?

Version Control Systems are so�ware that keep track of your files and their full history
Project files and “history” in the form of “snapshots”/“checkpoints” are organized in a
folder
Explicitly indicate what file(s) and what change(s) to store with a named snapshot
(include why the changes were made)
Can “go back in time” and see/use files how they look at a specific snapshot
Can see what changed between snapshots, and in what snapshot content was first
introduced
Can “experiment” by having “organized parallel versions” of files
Synchronize different copies of the project between different computers/collaborators

2 . 7

VERSION CONTROL SYSTEMS - VOCABULARYVERSION CONTROL SYSTEMS - VOCABULARY
Version Control Systems are so�ware that keep track of your files and their full history
Project files and “history” in the form of “snapshots”/“checkpoints” are organized in a
folder -> repository
Explicitly indicate what file(s) and what change(s) to store with a named snapshot
(include why the changes were made) -> commit or revision
Can “go back in time” or “jump forward” and see/use files how they look at a specific
snapshot -> checkout or revert
Can see what changed between snapshots, and in what snapshot content was first
introduced -> diff, annotate and blame
Can “experiment” by having “organized parallel versions” of files -> branch
Synchronize different copies of the project between different computers/collaborators ->
push & pull

2 . 8

WHAT TYPE OF FILES CAN I TRACK WITH VERSIONWHAT TYPE OF FILES CAN I TRACK WITH VERSION
CONTROL?CONTROL?

All types of files can be tracked with version control (but big files may require special care)
Version control is most useful for plain “text”-files (txt, md, tex, csv, .py, .R, .m, html, ….)
where differences between versions can be “easily” visualized and multiple changes can
be merged/combined automatically
Version control works also for binary files (docx, xlsx, etc.), but it would only tell us if there
is a change, but not visualize the change and the version control system will not be able
to merge changes automatically

2 . 9

WHAT VERSION CONTROL SYSTEMS ARE AVAILABLE?WHAT VERSION CONTROL SYSTEMS ARE AVAILABLE?
GIT, PerForce, Mercurial, Subversion
(SVN), Bazaar, Concurrent Versions
System (CVS), Monotone, ….
We will focus on GIT in this workshop

From https://twitter.com/rhodecode

2 . 10

https://twitter.com/rhodecode

CENTRALISED VS. DISTRIBUTED VERSION CONTROLCENTRALISED VS. DISTRIBUTED VERSION CONTROL
SYSTEMSYSTEM

In the centralized setup, there is a single
(central) copy of the project and each
user will apply changes to the central
copy

In the distributed setup, each user has
their own (full) copy of the project (a
clone)

SVN, PerForce, CVS are examples of
centralised version control system

GIT and Mercurial are examples of
distributed version control system

From https://github.com/AnnieCannons/ac-terminal-and-git/blob/gh-
pages/images/versioncontrol

2 . 11

https://github.com/AnnieCannons/ac-terminal-and-git/blob/gh-pages/images/versioncontrol

GITGIT

3 . 1

GITGIT

From

Popular version control so�ware:
Distributed system
Free and Open Source
Available for Windows, Linux and Mac
A lot of support, infrastructure and tools available to interface with GIT:

graphical user interfaces (GUIs)
seamless integration with Integrated Development Environments (IDEs)
for R, MATLAB, Python, …
cloud services (BitBucket, GitHub, GitLab)

Developed by the Linus Torsvalds in 2005 to manage the development of Linux and
maintained by Junio Hamano

https://git-scm.com/

3 . 2

https://git-scm.com/

TRACKING LARGE FILES WITH GITTRACKING LARGE FILES WITH GIT

Drop-in replacement for “normal” GIT ->
git lfs add vs. git add
Files are stored “externally”, so that GIT
operations can run seamlessly and fast
Good solution for “large” files (100 MB - 2
GB)

From

Alternatives:

Do not version control large file
set permission to Read Only
version control metadata instead

…

“Git Large File Storage (LFS) replaces large files such as audio
samples, videos, datasets, and graphics with text pointers inside Git,
while storing the file contents on a remote server like GitHub.com or

GitHub Enterprise”

https://git-lfs.github.com/

https://git-lfs.github.com/

git-annex

3 . 3

https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-annex.branchable.com/

EXCLUDE FILES FROM TRACKINGEXCLUDE FILES FROM TRACKING
.gitignore: “special” file to list files and folders to intentionally not track
Prevents files/folders from showing when running git status -> less clutter

Can also be added by running git add -f (short for force)

Rationale: not all files need to be version controlled
figures, tables, manuscript pdf generated by running code -> version control the
raw data and the code to generate outputs instead
temporary files, compiled outputs, …

Checkout to help identify files to ignorehttps://www.gitignore.io/

3 . 4

https://www.gitignore.io/

INSTALLATIONINSTALLATION

4 . 1

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Go to https://git-scm.com/

https://git-
scm.com/

4 . 2

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Select to download latest stable GIT release for Windows

https://git-
scm.com/

4 . 3

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Wait for executable to download

https://git-
scm.com/

4 . 4

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Save executable in suggested folder

https://git-
scm.com/

4 . 5

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Click on executable to start installation process

https://git-
scm.com/

4 . 6

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Select Install anyway

https://git-
scm.com/

4 . 7

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Select Yes

https://git-
scm.com/

4 . 8

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 9

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 10

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 11

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 12

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 13

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 14

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 15

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Next

https://git-
scm.com/

4 . 16

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Accept default settings by clicking on Install

https://git-
scm.com/

4 . 17

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Monitor installation progress

https://git-
scm.com/

4 . 18

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Select Launch Git Bash, Unselect View Release Notes and click on
Finish

https://git-
scm.com/

4 . 19

https://git-scm.com/

GIT INSTALLATIONGIT INSTALLATION
1. Go to

2. Download executable
in suggested directory

3. Install by following
step-by-step
instructions and
accepts default
settings

4. Verify installation
completed
successfully

Verify installation completed successfully

https://git-
scm.com/

4 . 20

https://git-scm.com/

NOW YOU INSTALL GIT ON YOUR COMPUTER (5-10 MIN)NOW YOU INSTALL GIT ON YOUR COMPUTER (5-10 MIN)
1. Go to
2. Download executable in suggested directory
3. Install by following step-by-step instructions and accepts default settings

Signal once installation progress has started

https://git-scm.com/

4 . 21

https://git-scm.com/

DEMODEMO

5 . 1

DEMODEMO
To demonstrate we are going to go through an example for writing a manuscript.

We will track the history of our manuscript and accompanying files in git
We will use git to see the history of our files and to undo a mistake
We will use git to synchronize the files between multiple computers and to collaborate
with other authors

5 . 2

WRITING PAPERS WITH MARKDOWNWRITING PAPERS WITH MARKDOWN

(Wikipedia)

Markdown text (.md extension) can be converted to other formats (.docx, .pdf, .html) with

References can also be stored in plain text files (.bib)
Learn more about markdown

“Markdown is a lightweight markup language with plain text
formatting syntax”

Pandoc

here
Try it online

5 . 3

https://pandoc.org/MANUAL.html
https://www.markdownguide.org/
https://dillinger.io/

WRITING PAPERS WITH MARKDOWN - EXAMPLEWRITING PAPERS WITH MARKDOWN - EXAMPLE

Markdown manuscript Markdown pdf

title: 'HCP: A Matlab package to create beautiful

heatmaps with richly annotated covariates'

authors:

 - name: Manuela Salvucci

 orcid: 0000-0001-9941-4307

 affiliation: 1

 - name: Jochen H. M. Prehn

 orcid: 0000-0003-3479-7794

 affiliation: 1

affiliations:

 - name: Centre for Systems Medicine, Department of

Physiology and Medical Physics, Royal College of

Surgeons in Ireland, Dublin, Ireland

 index: 1

date: 20 January 2019

bibliography: paper.bib

Summary

A heatmap is a graphical technique that maps 2-

dimensional matrices of numerical values to colors

to provide an immediate

and intuitive visualization of the underlying patterns

[@Eisen1998]. Heatmaps are often used in conjunction

i h l

5 . 4

GETTING STARTEDGETTING STARTED
Two main approaches to get a git repository:

start a repository from scratch -> git init
start by cloning an existing repository -> git clone

5 . 5

PRACTICAL EXAMPLEPRACTICAL EXAMPLE

5 . 6

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Make a project folder

5 . 7

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Name it demo

5 . 8

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Open GIT bash

5 . 9

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

GIT bash

5 . 10

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Configure GIT

5 . 11

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Initialize repository

5 . 12

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

The folder still looks empty a�er git init. There is a hidden .git
directory that you can normally not see

5 . 13

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

If you explicitly open the .git subdirectory, you can see a lot of
files internal to GIT. You do not need to directly interact with

these files (and do not delete them)

5 . 14

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Create a new text document for a manuscript we are writing

5 . 15

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Rename the file to manuscript.md to indicate that the file is
formatted with markdown

5 . 16

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

First manuscript dra�

5 . 17

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

We can use git status command to see what the repository status
is

5 . 18

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

To prepare a new file to be added to the repository, we use git
add. If we re-run git status we now see that the file is staged

5 . 19

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

To store changes in the repository, we use git commit. We specify
a commit message a�er -m to record what we did

5 . 20

ANATOMY OF A COMMITANATOMY OF A COMMIT
Includes:

what changed compared to the previous commit (snapshot)
which files are affected by changes and how

rationale for the change (commit message)
timestamp
“name”: unique identifier represented by

for example: 4fc82ba7bb3f3a3de8ac57f16b6a926a7e60a21e
first 6 digits are typically sufficient to describe a commit -> shorthand
version 4fc82ba

“parent” commit (reference to previous snapshot)
first commit is special (has no parent)
last commit is special (it is called HEAD)

The full series of commits makes up the whole project

SHA-1 hashes

5 . 21

https://en.wikipedia.org/wiki/SHA-1

GUIDELINES ON COMMITS… SIZE MATTERGUIDELINES ON COMMITS… SIZE MATTER
Commit small units of changes and commit o�en
A good unit of change is a small, self-contained, working change

GOOD: data.csv, process_data_figure1.py, make_figure1.py
BAD: 1 commit with a day worth of work (on multiple fronts)

Rule of thumb: commit together what you would need to undo if you later want to
disregard this change

5 . 22

GUIDELINES ON COMMITS… MESSAGEGUIDELINES ON COMMITS… MESSAGE
Write good commit messages:

GOOD: Update ReadMe to include ‘how-to-
install’ section. Fixes issue ##1
BAD: Major fixup
which of the 2 messages above would you
rather read the evening before a deadline?

A perfect commit message summarises the what
and why of the change, not the how (can be seen
from the diffs)
Other advice include:

keep the message subject coincise (<50
words) -> log looks cleaner
add additional details (if needed) a�er a
blank line and wrap at 72 characters ->
readability
use imperative verb (Add vs. Added) -> if
change get reverted, message reads better
(Revert Add …)
use commit.template

From

Examples of how (not to) write commit messages
More tips on writing good commit messages

https://xkcd.com/1296/

5 . 23

http://whatthecommit.com/
https://github.com/erlang/otp/wiki/writing-good-commit-messages
https://xkcd.com/1296/

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

We use GIT status to check that there are no outstanding changes

5 . 24

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Let us do some more work on the manuscript. We need to add
more details for materials and methods and add a section for

references

5 . 25

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Once we have finished with our change, we use git commit to add
the new version of the file to the GIT repository

5 . 26

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

We changed our mind, and we will use mutation data instead of
RNASeq. Let us update the materials and methods

5 . 27

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Commit the change as before

5 . 28

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Add figures and tables to our manuscript

5 . 29

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

We can use the git diff command to see how our current files are
different from the last one checked into the repository

5 . 30

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

If we create a figures directory with some image files and run git
diff we see that this directory is untracked by GIT

5 . 31

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

We add the whole directory with git add and rerun git status.
Now it lists the files as new instead

5 . 32

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

To commit the files, we use git commit -a instead of listing them.
-a means all, and will commit all files that we have added or

modified

5 . 33

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

The git log command can show a history from the repository.
Last change on top. –online gives a more compact representation

5 . 34

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Git diff can also be used to show the difference between two
revisions in the history. We need to specify the two commit

identifiers

5 . 35

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Actually, we changed our mind again, and want to use RNASeq.
Let us revert the previous change

5 . 36

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

GIT will ask us for a commit message for the revert. The default
message is fine

5 . 37

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

GIT confirms the change, like a normal commit

5 . 38

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

The history captures the revert

5 . 39

PRACTICAL EXAMPLEPRACTICAL EXAMPLE
1. Make a project folder
2. Start a GIT bash in the

project folder
3. Configure GIT
4. Initialize repository
5. Standard workflow

1. Make edits
2. (git add)
3. git commit
4. Repeat

6. git status
7. git diff
8. git log
9. git revert

Note that we did not just go back to a previous revision. We
selectively undid the RNASeq->mutation change, but we still

have the figures and tables, which was added a�erwards. GIT has
automatically merged our changes together

5 . 40

OTHER USEFUL GIT COMMANDSOTHER USEFUL GIT COMMANDS
git rm FILENAME: delete tracked file
git mv FILENAME1 FILENAME2: rename file from FILENAME1 to FILENAME2
git log –follow: inspec t log (even with renaming)

5 . 41

I AM WORKING ON IT…I AM WORKING ON IT…
git add -p FILENAME: add portions of changes you made to a file

preserve other changes, but they will not be captured in this commit
useful when you set out to make some changes, but you could not help fixing
(other) unrelated stuff

git squash: pool related commits in a meta-commit
git stash: stash away work in progress which is in a state that is too preliminary to be
committed and get back to it later

git stash list
git stash pop
git stash drop

5 . 42

OPS, I DID NOT MEAN TO DO THAT…. LET’S PRETEND ITOPS, I DID NOT MEAN TO DO THAT…. LET’S PRETEND IT
NEVER HAPPENEDNEVER HAPPENED

git commit –amend: by far the most used command
useful when you forgot to add a file before committing or you would like to
change commit message

git revert SHA: revert changes applied by SHA by creating a new commit
git checkout FILENAME: undo (uncommited) changes to FILENAME
git checkout SHA: checkout a snapshot where all was good
git reset: undo changes, degree of annihilation depends on flags (–so� vs. –hard), be
careful

5 . 43

OPS, SOMETHING WENT TERRIBLY TERRIBLY WRONG, ATOPS, SOMETHING WENT TERRIBLY TERRIBLY WRONG, AT
SOME POINT IN THE PASTSOME POINT IN THE PAST

git show : inspect (suspicious) commit
git blame: when and who changed/broke this?
git bisect: run binary search to identify when problem was introduced

extremelly useful command, a life-saver
requires knowing what right vs. wrong means (unit tests, ground truth, …)

5 . 44

GIT SUBMODULES… RUSSIAN DOLLS REPOSITORIESGIT SUBMODULES… RUSSIAN DOLLS REPOSITORIES

“It o�en happens that while working on one project, you need to use
another project from within it. Perhaps it’s a library that a third party
developed or that you’re developing separately and using in multiple
parent projects. A common issue arises in these scenarios: you want

to be able to treat the two projects as separate yet still be able to use
one from within the other.”

https://git-scm.com/book/en/v2/Git-Tools-Submodules

https://git-scm.com/book/en/v2/Git-Tools-Submodules

5 . 45

EXERCISE 1EXERCISE 1

6 . 1

EXERCISE 1 (20 MIN)EXERCISE 1 (20 MIN)
1. Create a folder named “christmas_repo”
2. Open GIT bash, verify the installation and configure GIT
3. Initialize a GIT repository in the folder
4. Create a text file (“wish_list.md”) with 3 gi�s you wish to receive for Christmas
5. Add and commit the wish list file to GIT
6. Edit the wish list file, and add 2 more presents
7. Use GIT to check the difference between the current and previous version
8. Commit the updated file
9. Create a file (“recipients.md”) with a list of people you plan to buy gi�s for

10. Check the status of the GIT repository
11. Add and commit the new file to GIT
12. Create a file (“past_gi�s.md”) with a list of what gi�s you gave last year
13. Maybe you remembered a few more people you would like to give gi�s to. Add them to

“recipients.md”
14. Add the new file and commit “past_gi�s.md” and “recipients.md” to GIT
15. Look at the GIT history
16. Revert the change that added more presents to the wish list in step 5
17. Play around with doing more changes and commits

6 . 2

GIT SUPPORT TOOLSGIT SUPPORT TOOLS

7 . 1

GIT SUPPORT TOOLSGIT SUPPORT TOOLS
Graphical user interface (GUIs)
Integration with so�ware Integrated Development Environments (IDEs) for R, MATLAB,
Python, …
Cloud services (BitBucket, GitHub, GitLab)

7 . 2

GIT GRAPHICAL USER INTERFACE (GUI)GIT GRAPHICAL USER INTERFACE (GUI)

From https://git-scm.com/downloads/guis

7 . 3

https://git-scm.com/downloads/guis

GIT GRAPHICAL USER INTERFACE (GUI)GIT GRAPHICAL USER INTERFACE (GUI)

7 . 4

GIT GRAPHICAL USER INTERFACE (GUI)GIT GRAPHICAL USER INTERFACE (GUI)

7 . 5

GIT INTEGRATION WITH SOFTWARE INTEGRATEDGIT INTEGRATION WITH SOFTWARE INTEGRATED
DEVELOPMENT ENVIRONMENTS (IDE)DEVELOPMENT ENVIRONMENTS (IDE)

RStudio (R IDE) MATLAB (MATLAB IDE) PyCharm (Python IDE)

7 . 6

CLOUD SERVICES THAT SUPPORT GIT… “SOCIAL” CODINGCLOUD SERVICES THAT SUPPORT GIT… “SOCIAL” CODING
Servers that can host a copy of your repository
Useful as a backup
Can make synchronization and collaboration easier
Free plans available
Most popular alternatives:

Other alternatives include Crucible, AWS CodeCommit, CodeCommit, ….

7 . 7

https://github.com/
https://bitbucket.org/
https://about.gitlab.com/

CLOUD SERVICES THAT SUPPORT GIT… “SOCIAL” CODINGCLOUD SERVICES THAT SUPPORT GIT… “SOCIAL” CODING
Comparison of key features in free plans from GitHub, BitBucket and GitLab

Similar products, select the one that suits best your needs

7 . 8

BITBUCKETBITBUCKET

8 . 1

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Go to the BitBucket website and click Get Started

8 . 2

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Follow instruction by filling in required info

8 . 3

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Follow instruction by filling in required info

8 . 4

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Verify email

8 . 5

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Log in with your credential

8 . 6

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Log in with your credential

8 . 7

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Choose your username

8 . 8

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Finalize setup

8 . 9

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Complete account creation

8 . 10

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Create a repository for the demo

8 . 11

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Create a repository for the demo

8 . 12

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Create a repository for the demo

8 . 13

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Since we have an existing repository to upload, we follow the
instructions for Get your local repository on BitBucket

8 . 14

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

We go to the GIT bash to upload. We need to use the https
protocol (instead of ssh) on the RCSI network

8 . 15

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Also to use git from the RCSI network, we need a workaround for
ssl verification

8 . 16

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The BitBucket landing page for the repository shows the list of
files and when they were last changed

8 . 17

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

We can see the history of commits

8 . 18

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The content of the last commit

8 . 19

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The content of the last commit

8 . 20

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

BitBucket has an annotate feature which highlights when each
line in the file was last changed

8 . 21

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Markdown rendering of the manuscript file

8 . 22

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Collaborator clones repository

8 . 23

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Collaborator adds text on bioinformatic analysis

8 . 24

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Collaborator commits their change

8 . 25

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Collaborator tries to push their change to the bitbucket server.
This fails, because another change has been made a�er they

clone

8 . 26

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Collaborator needs to first pull from the server

8 . 27

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The pull results in a merge between the two changes. They
accept the default commit message for the merge

8 . 28

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The pull is successful

8 . 29

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

Now they can push their change to the server

8 . 30

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The server now shows history for the file that includes both the
collaborators changes and my other simultaneous change, and

show that they have been merged together

8 . 31

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

When we annotate the file we see the bioinformatic analysis text
from the collaborator and the samples information from our

change

8 . 32

USING BRANCHES AND TAGSUSING BRANCHES AND TAGS

8 . 33

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The history graph shows a figures branch for work on the figures
that is kept separate from the rest

8 . 34

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

The figures branch was merged with the rest of the work

8 . 35

BITBUCKET EXAMPLEBITBUCKET EXAMPLE
1. Create account and

log in
2. Push demo repository

to BitBucket
3. Show history and diffs
4. Collaboration

scenario
1. Cloning

repository
(before last
commit)

2. Making
changes

3. Pushing and
pulling

4. Inspecting
history

We tagged the revision we shared with the other co-authors

8 . 36

EXERCISE 2EXERCISE 2

9 . 1

EXERCISE 2 (20 MIN)EXERCISE 2 (20 MIN)
1. Create a BitBucket account
2. Push your “christmas_repo” from exercise 1 to BitBucket
3. Add more past_gi�s and push to BitBucket
4. Update recipients through the BitBucket web-interface, and pull to your local machine
5. Collaborate in pairs

9 . 2

WRAP-UPWRAP-UP

10 . 1

TAKE HOME MESSAGESTAKE HOME MESSAGES
Version control with GIT helps keep your file history organized
Light weight: minimum effort required
If you are not comfortable with using the command line, download a GUI or use GIT from
your IDE
Commit early and o�en
Write good commit messages - future you will appreciate it
Useful for backups and for collaboration

10 . 2

THANKS & QUESTIONSTHANKS & QUESTIONS

Get int touch:

Presentation, CheatSheet, Handout and Solution:

Workshop repo:

Useful resources

From

manuelasalvucci@rcsi.ie

https://bitbucket.org/manuela_s/git_workshop/downloads/

https://bitbucket.org/manuela_s/git_workshop

https://git-scm.com/
https://git-scm.com/book/en/v2
https://try.github.io/
https://stackoverflow.com/questions/tagged/git
https://sethrobertson.github.io/GitBestPractices/

https://raw.githubusercontent.com/hendrixroa/in-case-
of-fire-1/master/

10 . 3

mailto:manuelasalvucci@rcsi.ie
https://bitbucket.org/manuela_s/git_workshop/downloads/
https://bitbucket.org/manuela_s/git_workshop
https://git-scm.com/
https://git-scm.com/book/en/v2
https://try.github.io/
https://stackoverflow.com/questions/tagged/git
https://sethrobertson.github.io/GitBestPractices/
https://raw.githubusercontent.com/hendrixroa/in-case-of-fire-1/master/

